

Comp

Southern Connecticu State University

Siddhi Suresh, Harry L. Sanders IV, Joshua A. Riznyk Faculty Advisor: Winnie Yu, EdD {anantakriss1, sandersivh1, riznykj1, yuw1} @southernct.edu THE EFFECTS OF BIASED TRAINING DATA ON INTERSECTIONAL **GLASSIFICATION ACCURACY IN FACIAL ANALYSIS RESULTS METHODOLOGY**

INTRODUCTION

Most facets of our society, including scientific disciplines, have biases and other forms of discrimination. Computing and Artificial Intelligence (AI) are two areas where this issue is at the forefront. Bias and discrimination within this technology enable it to spread to other areas, facilitate social injustice and imbalance, and have societal repercussions for research or the larger society. Bias can be introduced into the development of AI, its learning methods, data collection, and/or analysis produced from these algorithms when researchers and developers fail to take into consideration their own biases, often unwillingly. Our primary goal in doing this research is to examine the relationship between bias in datasets and bias in classification algorithms.

DATASETS

Table	I: Data Pa	artitioning

Dataset	Fairness	Size	Attributes	
			Male, Female, Black, White, East	
			Asian, Indian, Southeast Asian,	
Fairface Balance	1.000	15704	Latino/Hispanic, Middle Eastern	
			Male, Female, Black, White, East	
			Asian, Indian, Southeast Asian,	
Fairface Somewhat Balance	0.199	15663	Latino/Hispanic, Middle Eastern	
			Male, Female, Black, White, East	
			Asian, Indian, Southeast Asian,	
Fairface Completely Unbalanced	0.042	15705	Latino/Hispanic, Middle Eastern	
CelebA Balance	1.000	15682	Male, Not Male, Young, Old	
CelebA Somewhat Balance	0.024	15680	Male, Not Male, Young, Old	
CelebA Completely Unbalanced	0.001	12626	Male, Not Male, Young, Old	

Images I-III: Example Data (CelebA)

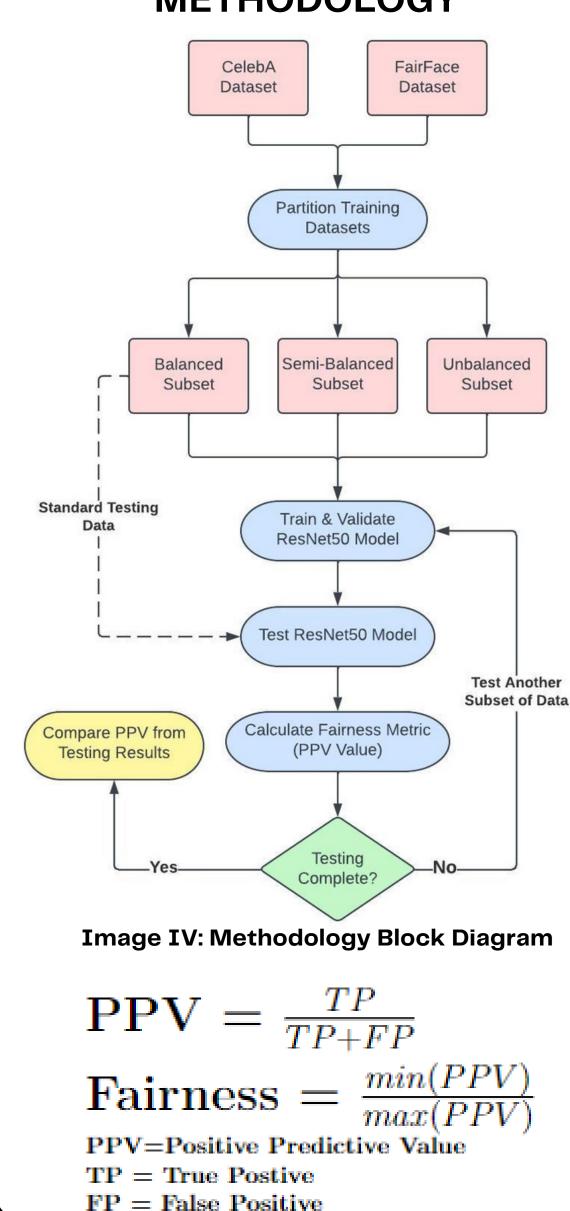
REFERENCES

[1] J. Buolamwini and T. Gebru, "Gender shades: Intersectional accuracy disparities in commercial gender classification," in Conference on fairness, accountability and transparency. PMLR, 2018, pp. 77–91. [2] A. K. Menon and R. C. Williamson, "The cost of fairness in binary classification," in Conference on Fairness, Accountability and Transparency. PMLR, 2018, pp. 107–118. [3] S. Fu, H. He, and Z.-G. Hou, "Learning race from face: A survey," IEEE transactions on pattern analysis and machine

intelligence, vol. 36, no. 12, pp. 2483-2509, 2014.

ACKNOWLEDGEMENT

We would like to acknowledge and thank Dr. Mohammad Islam, Ph.D & Dr. Amal El-Raouf, Ph.D, for their support, guidance, and inspiration throughout this project.



Training Dataset Fairness vs. Algorithm Fairness 1.05 y = 0.087x + 0.899 Fairness $R^2 = 0.9429$ 0.95 Algorithm 0.9 CelebA FairFace sulting Linear (CelebA) y = 0.0335x + 0.8151 0.8 $R^2 = 0.273$ Linear (FairFace) 0.75 0.7 0.4 0.6 0.8 0.2 Training Dataset Fairness

uthern Connecticut State University

Image V: Fairness Results for FairFace & CelebA

Regression Statistics for CelebA		Regression Statistics for FairFace			
Multiple R	0.971051	Multiple R	0.522502		
R Square	0.94294	R Square	0.273009		
Adjusted R Square	0.938551	Adjusted R Square	0.217086		
Standard Error	0.010014	Standard Error	0.024623		
Observations	15	Observations	15		
Coefficients	0.087045	Coefficients	0.033494		
Standard Error	0.005939	Standard Error	0.015159		
t Stat	14.6571	t Stat	2.209506		
P-value	1.84E-09	P-value	0.045692		

Table II: Statistical Results

CONCLUSIONS

- Image V shows the positive correlation calculated between the fairness of the FairFace & CelebA datasets and the fairness of the algorithm's performance
- Table II shows that the variance in the dataset fairness had a 92.2% and 27.3% impact on the fairness of the classifier for CelebA and FairFace respectively
- Correlations for both datasets are significant, as determined by the pvalues calculated for both datasets; 0.045 for CelebA, >0.000 for FairFace
- For both datasets, we can reject the null hypothesis, which stated that there was no correlation between dataset fairness and algorithm fairness
- We can successfully support the claim that dataset fairness does impact algorithm fairness