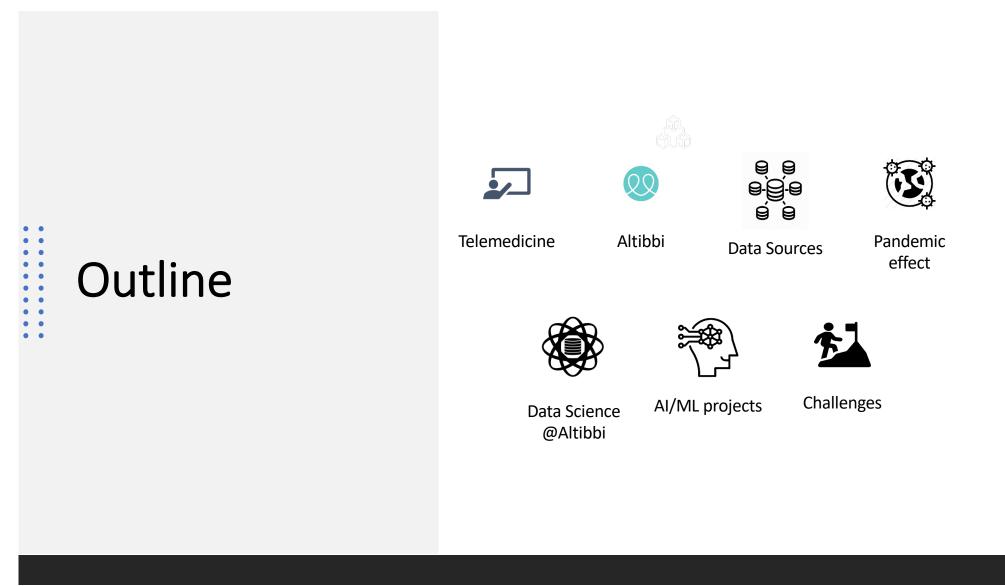
Presented By: Dr. Hossam Faris April 10th, 2021

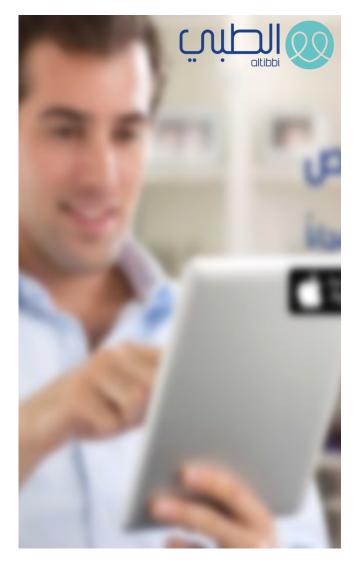
Digital Data in Healthcare: Advanced Applications and Challenges



Telemedicine

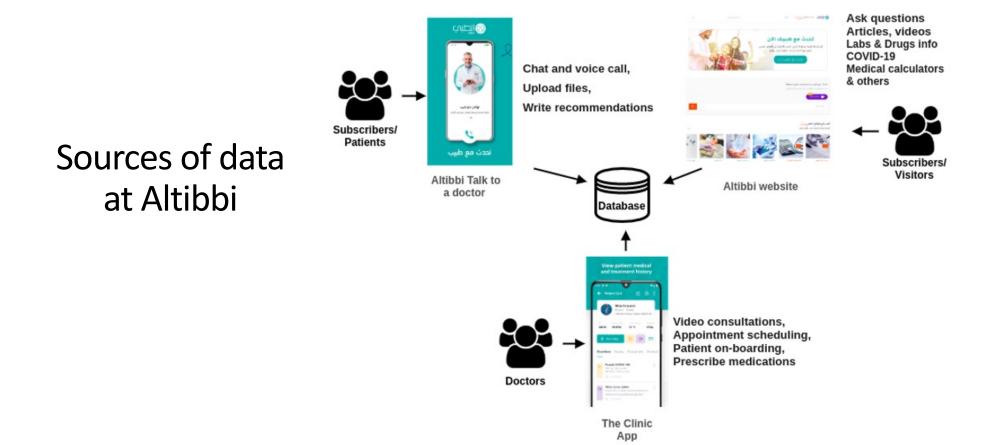
Telemedicine, a term coined in the 1970s.

Means "healing at a distance", which signifies the use of ICT to improve patient outcomes by increasing access to care and medical information.



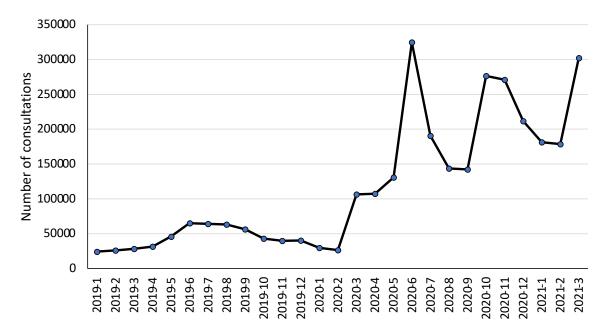
The context: Altibbi (www.altibbi.com)

- It is one of the largest digital health platform in the Middle East and North Africa (**MENA**).
- Launched in **2011** in Amman, Jordan.
- The platform aims for presenting **telehealth services** & **simplified medical information** to users in the region in **Arabic**.
- Altibbi Telehealth increases people's access to quality **primary healthcare** while **lowering** the **risk of disease transmission**.



The effect of the pandemic

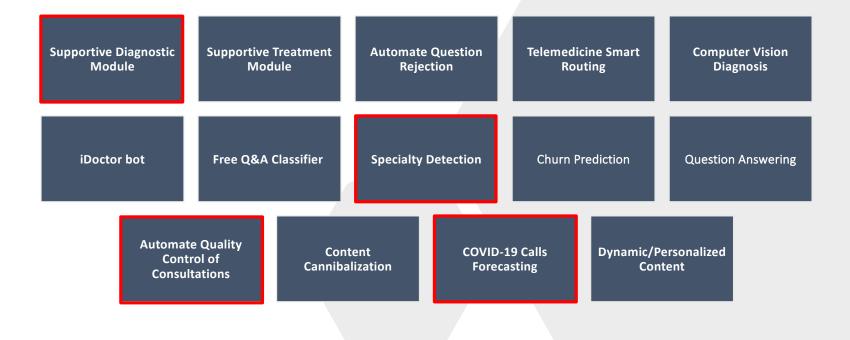
- 1. Altibbi is witnessing a huge demand for the service.
- Altibbi covered 2 million consultations from March 2020 till January 2021!



The data science department has been officially structured (after ~**18** months) of preparation and building **skills** & **capacity**.

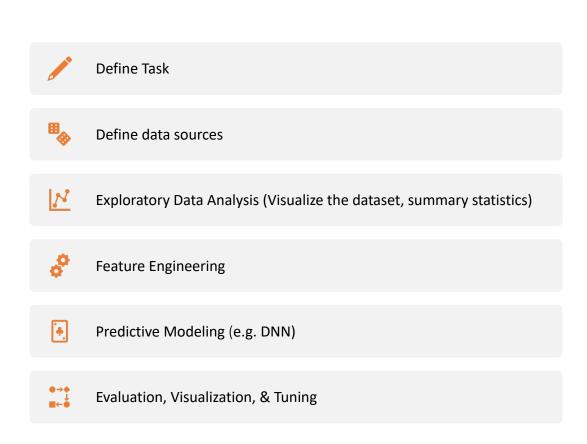
The **aim** is to improve the **quality** of different processes & services at different levels **using state-of-the-art** data science & **DL** technologies.

Altibbi Data Science Roadmap

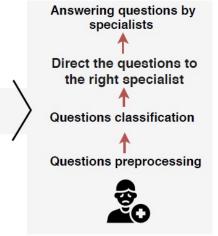


\bigcirc

AI/ML-based Project



Specialty Detection (Problem and Proposed Module)

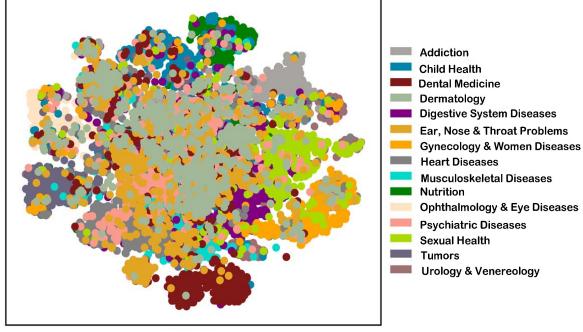


Consume time & efforts

Incorrect classifications

Intelligent module

Specialty Detection (Data Visualization)

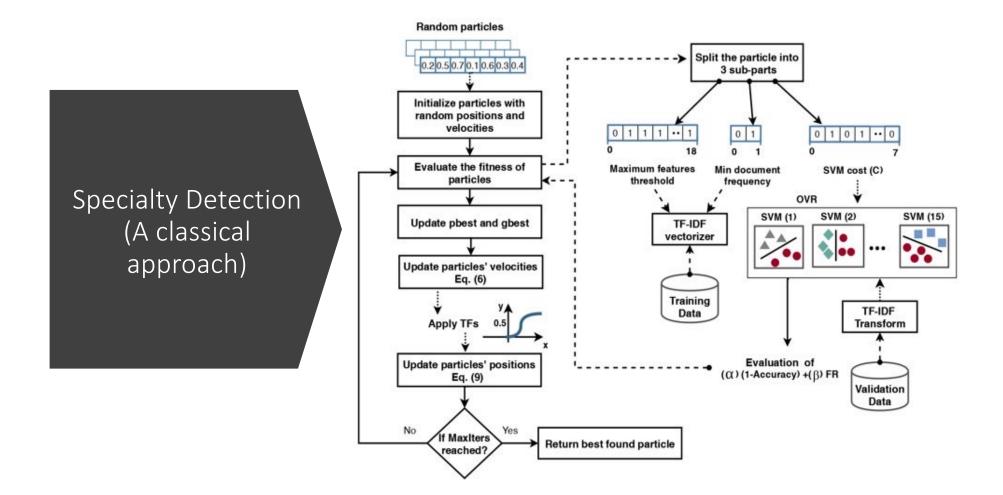


Dimension 1

tSNE projection of 15,000 questions after preprocessing

Specialty Detection (A classical approach)

- Feature representation: **TF-IDF**
- Classifier: SVM
- Multi class strategy: **One-VS-Rest**



	Child Health		214 5	1 223	4	6 3	3 7	1	6 1	4	3 0	1 2	1 1	1 0	2 1	2		200
	Dental Medicine Dermatology	1 0	2		212	4	3	5	4	4	1	2	2	2	1	0 5		
	Digestive System Diseases	0	2	0	6	4 207	8	3	4	3	4	1	2	2	2	4		160
	Ear, Nose & Throat	3	1	2	4	3	212	3	4	5	1	2	2	0	4	4		100
	Gynecology & Women Dis.	0	2	0	2	2	1	216	3	2	3	0	1	5	6	7		
202	Heart Disease	0	2	1	0	5	3	2	221	5	2	0	6	0	0	3		120
II NE LADEIS	Musculoskeletal Diseases	1	3	2	6	3	2	2	6	214	2	1	1	3	2	2		
=	Nutrition	2	6	0	5	5	0	5	1	3	215	2	1	2	3	0		80
	Ophthalmology & Eye Dis.	0	6	1	3	1	1	0	1	5	0	227	4	0	0	1		
	Psychiatric Diseases	3	8	1	2	6	1	3	11	2	2	3	203	4	0	1		
	Sexual Health	3	3	0	4	2	2	10	2	4	2	1	4	199	1	13		40
	Tumors	0	7	1	5	1	2	2	4	2	2	4	3	1	214	2		
	Urology & Venereology	1	4	0	8	2	1	7	1	5	1	0	1	21	4	194		0
		Addiction	Child Health	Dental Medicine	Dermatology	Digestive System Diseases	Ear, Nose & Throat	Gynecology & Women Dis.	Heart Disease	Musculoskeletal Diseases	Nutrition	Ophthalmology & Eye Dis.	Psychiatric Diseases	Sexual Health	Tumors	Urology & Venereology		
							Pre	edicte	d La	bels								

Heatmap of the confusion matrix

Specialty Detection (Results)

True Labels

Algorithm	Accuracy	$F1 - score_m$	$Recall_m$	$Precision_m$
$BPSO_{S4} - SVM_{OVR}$	0.852 ± 0.001	0.851 ± 0.001	$\textbf{0.851} \pm \textbf{0.001}$	0.852 ± 0.001
linearSVM(C=0.5)	0.844 ± 0.000	0.844 ± 0.000	0.844 ± 0.000	0.845 ± 0.000
	2.8719E-11			
Random Forest	0.736 ± 0.006	0.735 ± 0.007	0.736 ± 0.006	0.739 ± 0.007
	2.8719E-11			
Logistic Regression	0.835 ± 0.003	0.836 ± 0.003	0.839 ± 0.003	0.840 ± 0.003
	2.8719E-11			
MultinomialNB	0.812 ± 0.036	0.812 ± 0.036	0.812 ± 0.036	0.814 ± 0.035
	2.8719E-11			
ComplementNB	0.791 ± 0.023	0.789 ± 0.023	0.791 ± 0.023	0.791 ± 0.023
	2.8719E-11			
BernoulliNB	0.809 ± 0.033	0.809 ± 0.033	0.809 ± 0.033	0.811 ± 0.032
	2.8719E-11			
SGDClassifier	0.842 ± 0.001	0.842 ± 0.001	0.842 ± 0.001	0.842 ± 0.001
	2.8719E-11			
SVMs (RBF)	0.250 ± 0.280	0.230 ± 0.300	0.250 ± 0.280	0.750 ± 0.060
	2.8719E-11			
XGBoost	0.783 ± 0.010	0.783 ± 0.010	0.783 ± 0.010	0.785 ± 0.010
	2.8719E-11			
Adaboost	0.615 ± 0.005	0.626 ± 0.008	0.615 ± 0.005	0.686 ± 0.010
	2.8719E-11			
KNN	0.761 ± 0.042	0.761 ± 0.042	0.761 ± 0.042	0.765 ± 0.039
	2.8719E-11			

Table 4: A comparison of the average performance of $BPSO_{S4} - SVM_{OVR}$ with other machine learning algorithms considering the number of all features. P-Values are based on ($\alpha = 0.05$), where the significant results are with underline typeface.

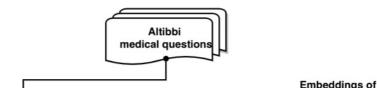
Specialty Detection (Results)

Specialty Detection (An attempt for improvement)

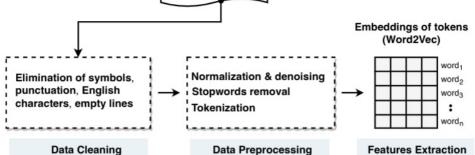
Targeted improvements:

- Feature representation level: Word Embeddings
- Classifier level: Deep learning

Specialty Detection: A deep learning approach (Pre-processing)

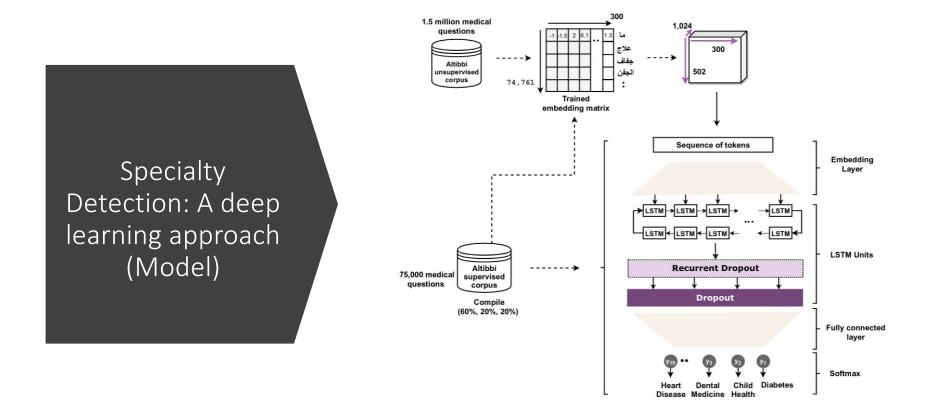


1.5 million unlabeled consultations



Specialty Detection: A deep learning approach (Feature representation)

- Word embedding representation based on 1.5 million unlabeled consultations
- Types of experimented embeddings:
 - Keras embedding
 - Aravec Twitter (Pre-Trained)
 - Aravec Wikipedia (Pre-Trained)
 - AltibbiVec



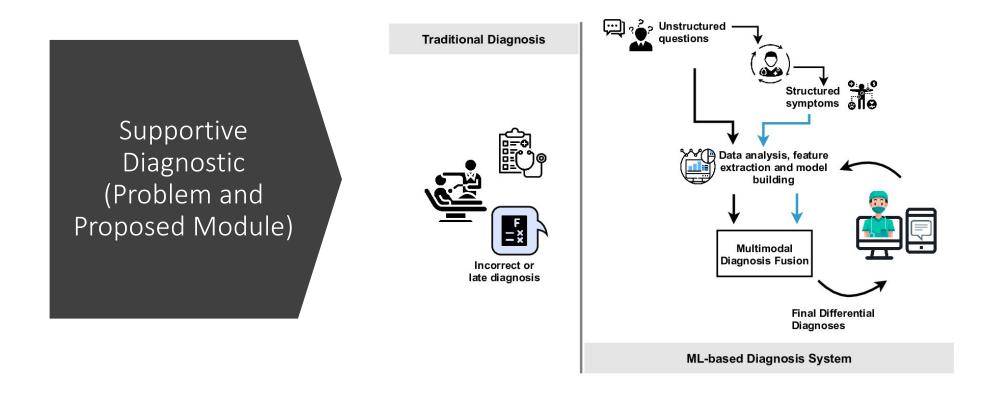
	Bi	LSTM (3	0)	LSTM (40)				
Class	Precision	Recall	F1-score	Precision	Recall	F1-score		
Diabetes	0.859	0.854	0.857	0.850	0.861	0.855		
Child Health	0.949	0.945	0.947	0.941	0.965	0.953		
Ear, Nose & Throat	0.844	0.824	0.834	0.819	0.824	0.822		
Dental Medicine	0.902	0.922	0.912	0.909	0.912	0.911		
Nutrition	0.859	0.847	0.853	0.860	0.842	0.851		
Ophthalmology & Eye Diseases	0.841	0.869	0.855	0.868	0.861	0.864		
Dermatology	0.853	0.888	0.870	0.859	0.873	0.866		
Heart Disease	0.860	0.873	0.867	0.855	0.879	0.867		
Tumors	0.873	0.855	0.864	0.872	0.862	0.867		
Psychiatric Diseases	0.888	0.860	0.874	0.865	0.875	0.870		
Urology & Venereology	0.917	0.953	0.935	0.922	0.949	0.935		
Digestive System Diseases	0.890	0.875	0.883	0.902	0.880	0.891		
Musculoskeletal Diseases	0.833	0.824	0.829	0.837	0.813	0.825		
Sexual Health	0.878	0.868	0.873	0.880	0.870	0.875		
Gynecology & Women Diseases	0.832	0.824	0.828	0.827	0.803	0.815		
Macro-average	0.872	0.872	0.872	0.871	0.871	0.871		

Table 4: Comparison between BiLSTM (30) and LSTM (40) based on precision, recall, and f1-scores for all classes.

Specialty Detection: A deep learning approach (results)

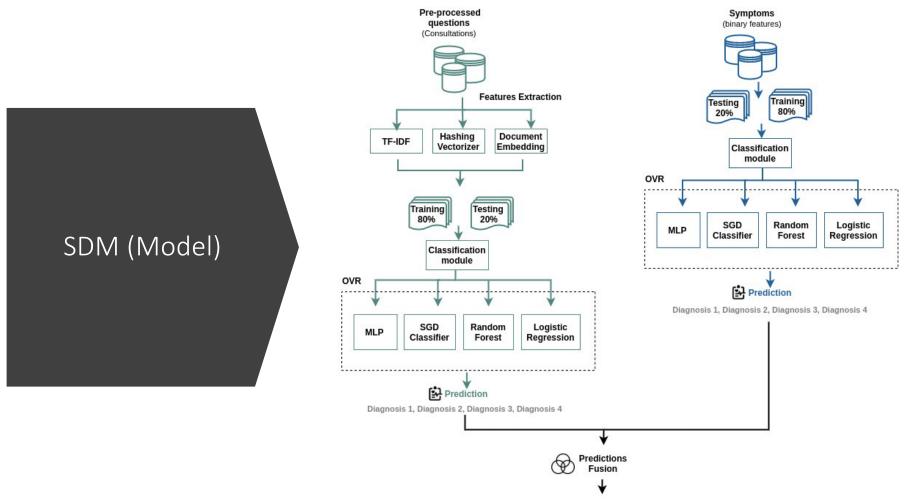
Challenges in Specialty Detection

- The Arabic language is a morphologically rich and sophisticated language.
- The use of colloquial Arabic (mix of dialects).
- There are specialties that are extremely hard to correctly classify due to the small number of instances under these specialties. (imbalanced distribution)
- Some questions could be multi-labeled.
- Some specialties have questions that are very similar syntactically and semantically.



Supportive Diagn ostic Module (Data)

- The total collected data from Altibbi is **263,867** of questions (consultations) that are accompanied by symptoms and diagnoses.
- The total number of **symptoms** is **7,324**, while the **diagnoses** are **7,410**. Each consultation is accompanied by **multiple symptoms and multiple diagnoses** even that some of them infrequently occur.
- The diagnoses that are **repeated less than 20 times** were removed; the final number of **questions is 246,814**, and for the **diagnoses is 1206**.



Diagnosis 1, Diagnosis 2, Diagnosis 3, Diagnosis 4

SDM	(Results)
-----	-----------

Table 6: The accuracy score of the final prediction based on four fusion criteria: the ranking of case I (Ranking-I), and of case II (Ranking-II), the summation, and multiplication.

		Accuracy									
	Ranking-I	Ranking-II	Summation	Multiplication							
$Precision_1$	0.813	0.828	0.846	0.849							
$\operatorname{Precision}_2$	0.761	0.784	0.809	0.811							
Precision_3	0.741	0.769	0.796	0.798							

SDM (Challenges)

- Associations between diagnoses is not detected.
- Rare diagnoses are extremely hard to detect.

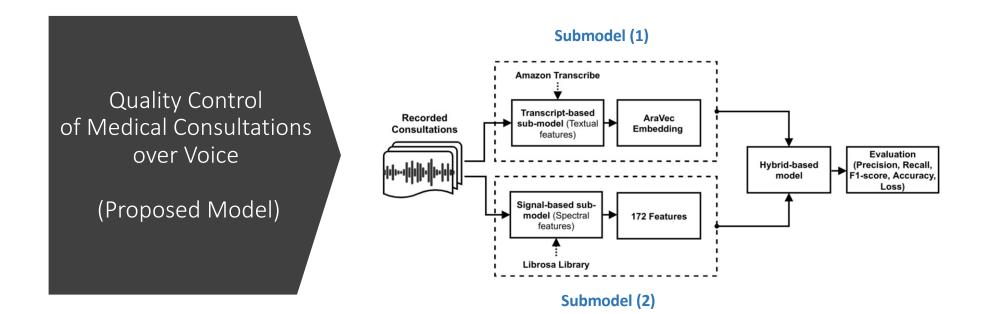
Quality Control of Medical Consultations over Voice (Problem Description)

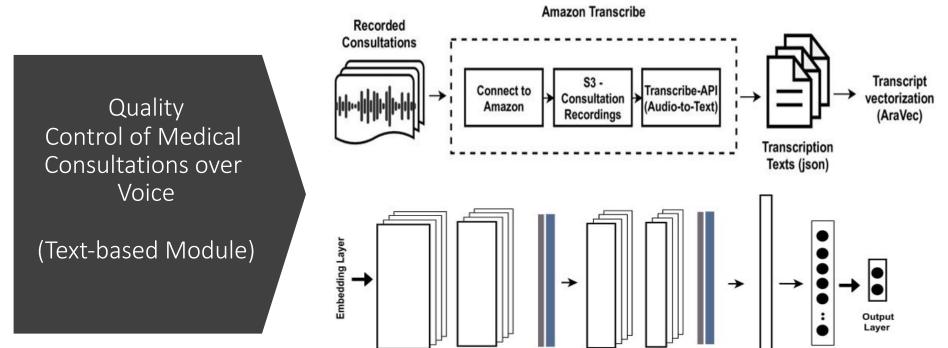
The aim behind this evaluation is to aid the medical operations team in recognizing low-quality consultations.

But **randomly sampling consultations** to find out **low-quality** one is not an efficient method and requires the operation team to listen to **a large number** of consultations.

For example, if we have a random sample of **100 consultations**, and the percentage of **poor**-consultations is **20%**; the operations team has to **check 100** consultations to find **20 poor**-items in the best case.

The **objective** is to improve the precision of identifying the low-quality calls.



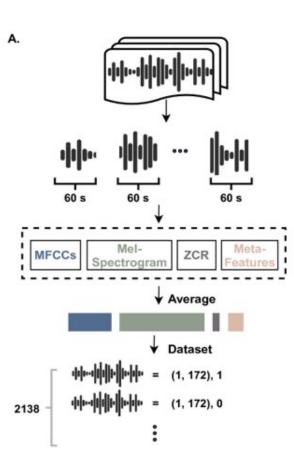


1st Conv. 2nd Conv. MP & BN 3rd Conv.

L Conv. 4th Conv. MP & BN Flattening Dense Layer

Quality Control of Medical Consultations over Voice

(Signal-based features)



Samples per audio

= sampling rate * duration

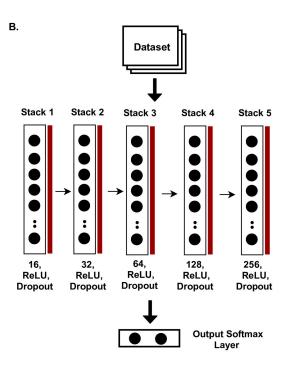
No. of segments

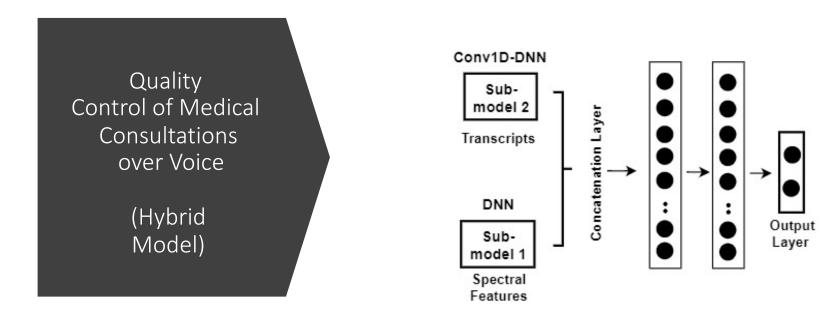
= duration / segment length

Samples per segment

= samples per audio / No. of segments

(Signals-based Model)





Results of the hybrid of the transcripts & signals-based submodels

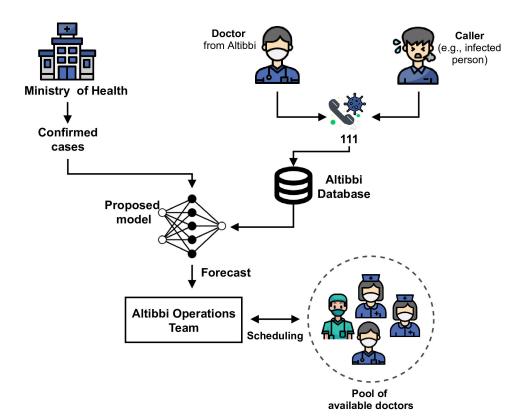
Table 5. The results of the hybrid approach of the transcripts and the spectral features using AraVec-Twitter at different structures of embedding models (E.M.), different E.D., embedding weights (E.W.), LR., and the batch size (B.S.).

Vocab Size	E.M.	Precis	ion	Recall		F1-Sco	ore	Acc.	Loss	Epochs	E.W.	E.D.	LR.	B.S
		P.C.	Mc. Avg.	P.C.	Mc. Avg.	P.C.	Mc. Avg.							
	SG	0.000	0.299	0.000	0.495	0.000	0.373	0.595	2.085				5E-04	
9000	SG	0.399	0.199	1.000	0.500	0.570	0.285	0.399	11.683	30	Non	300	9E-04	128
	SG	0.399	0.199	1.000	0.500	0.570	0.285	0.399	2.299				5E-05	
	SG	0.399	0.199	1.000	0.500	0.570	0.285	0.399	2.020				5E-04	
All	SG	0.000	0.301	0.000	0.500	0.000	0.375	0.601	11.685	30	Non	300	9E-04	128
	SG	0.394	0.322	0.977	0.491	0.562	0.286	0.393	2.162				5E-05	
	CBOW	0.400	0.501	0.250	0.501	0.308	0.488	0.551	3.315				5E-04	
All	CBOW	0.000	0.301	0.000	0.500	0.000	0.375	0.601	11.616	30	Non	100	9E-04	128
	CBOW	0.383	0.387	0.891	0.469	0.535	0.309	0.383	2.452				5E-05	
	CBOW	0.377	0.483	0.336	0.484	0.355	0.483	0.514	1.908				5E-04	
All	CBOW	0.408	0.510	0.586	0.511	0.481	0.495	0.495	11.623	30	Non	100	9E-04	64
	CBOW	0.411	0.512	0.523	0.513	0.460	0.507	0.511	1.524				5E-05	
	CBOW	0.397	0.489	0.898	0.496	0.550	0.355	0.414	1.256				5E-04	
All	CBOW	0.404	0.513	0.820	0.509	0.541	0.42	0.445	11.636	30	Non	100	9E-04	32
	CBOW	0.399	0.499	0.844	0.500	0.541	0.394	0.430	1.205				5E-05	
	CBOW	0.368	0.465	0.523	0.464	0.432	0.451	0.452	2.818	30				
All	CBOW	0.368	0.477	0.305	0.479	0.333	0.475	0.514	0.932	50	Trainable	100	5E-05	128
	CBOW	0.333	0.449	0.297	0.452	0.314	0.450	0.483	1.447	100				

Quality Control of Medical Consultations over Voice (Results) Quality Control of Medical Consultations over Voice (Challenges)

- The labeled dataset is relatively small, where a larger dataset might improve the model's performance.
- The data recorded at a low sampling rate (8khz), while 16khz is more recommended to capture various spectral and statistical features.
- Building a transcriber model for a speech of a mixture of dialects is very challenging.
- The definition of low-quality consultation is very broad.

Forecasting the number of received calls on COVID-19 hotline



Forecasting the number of received calls on COVID-19 hotline (Data)

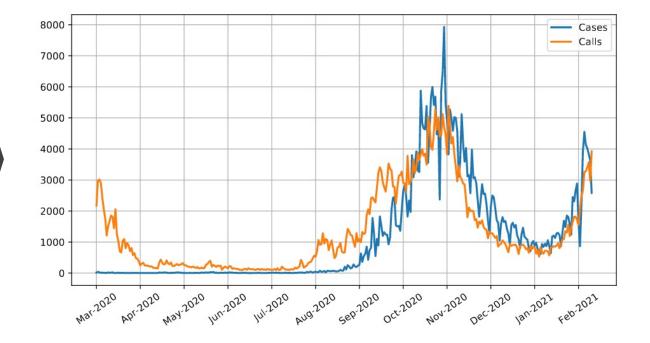
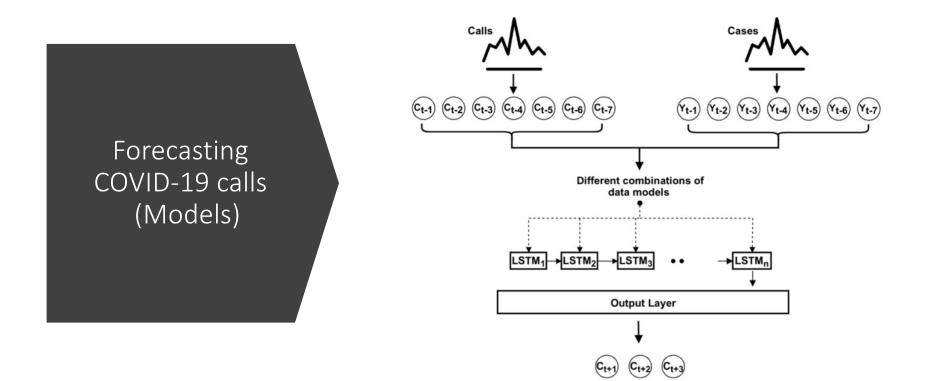


Table 1: Data Models for predicting the next three consecutive forecasts presented in terms of $C_{(t+1)}, C_{(t+2)}, C_{(t+3)}$.

Name	Model
$\mathbf{M_1}$	$f(C_{(t-1)})$
M_2	$f(C_{(t-1)}, C_{(t-2)})$
\mathbf{M}_{3}	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)})$
M_4	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)})$
M_5	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, C_{(t-5)})$
M_6	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, C_{(t-5)}, C_{(t-6)})$
M_7	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, C_{(t-5)}, C_{(t-6)}, C_{(t-7)})$
M_8	$f(C_{(t-1)}, Y_{(t-1)})$
M_9	$f(C_{(t-1)}, C_{(t-2)}, Y_{(t-1)}, Y_{(t-2)})$
M_{10}	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, Y_{(t-1)}, Y_{(t-2)}, Y_{(t-3)})$
M ₁₁	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, Y_{(t-1)}, Y_{(t-2)}, Y_{(t-3)}, Y_{(t-4)})$
M_{12}	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, C_{(t-5)}, Y_{(t-1)}, Y_{(t-2)}, Y_{(t-3)}, Y_{(t-4)}, Y_{(t-5)})$
M_{13}	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, C_{(t-5)}, C_{(t-6)}, Y_{(t-1)}, Y_{(t-2)}, Y_{(t-3)}, Y_{(t-4)}, Y_{(t-5)}, Y_{(t-6)})$
M ₁₄	$f(C_{(t-1)}, C_{(t-2)}, C_{(t-3)}, C_{(t-4)}, C_{(t-5)}, C_{(t-6)}, C_{(t-7)},$
11114	$Y_{(t-1)}, Y_{(t-2)}, Y_{(t-3)}, Y_{(t-4)}, Y_{(t-5)}, Y_{(t-6)}, Y_{(t-7)})$

Forecasting COVID-19 calls (Models)



\mathbf{Model}	$C_{(t+1)}$				$\mathbf{C}_{(\mathbf{t+2})}$		$\mathbf{C}_{(\mathbf{t+3})}$			
~	RMSE	MAE	R	RMSE	MAE	R	RMSE	MAE	R	
$\mathbf{M_1}$	263.71	202.02	0.972	398.53	299.59	0.936	535.83	407.07	0.919	
M_2	310.37	240.96	0.967	447.42	340.89	0.924	600.57	456.40	0.908	
M_3	370.81	289.95	0.961	537.05	408.62	0.906	654.43	499.16	0.912	
M_4	436.96	342.57	0.958	577.16	441.71	0.911	696.11	548.46	0.915	
M_5	435.10	347.99	0.963	565.15	435.84	0.914	721.92	576.03	0.916	
$\mathbf{M_6}$	539.85	429.45	0.956	591.13	464.53	0.909	704.01	570.66	0.914	
M_7	346.15	280.64	0.956	573.61	466.26	0.897	618.45	499.79	0.889	
M_8	244.56	184.57	0.972	367.72	274.06	0.930	511.05	368.01	0.907	
\mathbf{M}_{9}	285.04	219.02	0.967	425.05	314.82	0.919	571.91	430.38	0.908	
$\mathbf{M_{10}}$	301.41	238.52	0.965	484.40	369.87	0.915	644.61	486.23	0.908	
M_{11}	292.12	238.35	0.974	549.46	441.69	0.921	531.66	410.88	0.910	
M_{12}	386.72	313.25	0.968	565.93	443.03	0.918	794.92	656.45	0.909	
M_{13}	300.87	236.95	0.946	557.31	432.94	0.875	587.60	438.60	0.861	
M_{14}	304.39	240.45	0.935	506.96	386.94	0.865	644.16	505.25	0.859	

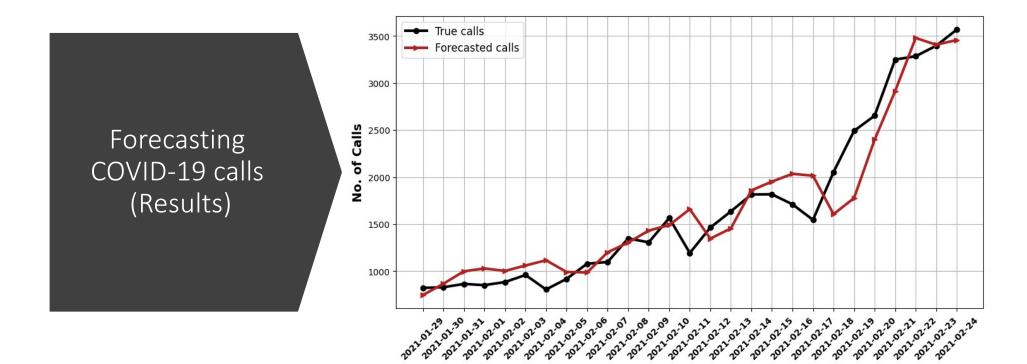
Table 4: The performance of LSTM based on the best tuned parameters, and the 14 constructed data models.

Forecasting COVID-19 calls (Results)

Model	$\mathbf{C}_{(\mathbf{t+1})}$				$\mathbf{C}_{(\mathbf{t+2})}$		$\mathbf{C}_{(\mathbf{t+3})}$				
	RMSE	MAE	R	RMSE	MAE	R	RMSE	MAE	\mathbf{R}		
M_1	236.02	178.54	0.973	361.30	277.39	0.939	490.10	366.93	0.923		
M_2	260.56	204.89	0.972	406.03	308.61	0.932	547.44	415.27	0.917		
M_3	284.56	229.92	0.971	443.12	340.76	0.926	587.06	450.39	0.916		
$\mathbf{M_4}$	312.38	255.65	0.969	457.55	357.94	0.924	599.37	467.66	0.913		
M_5	293.34	237.29	0.969	439.49	344.85	0.920	584.23	455.67	0.905		
M_6	270.03	207.68	0.963	446.38	347.08	0.906	590.04	466.60	0.873		
M_7	288.92	240.82	0.964	467.44	373.90	0.898	570.54	457.31	0.887		
M_8	219.33	164.64	0.971	347.05	265.29	0.937	479.49	348.65	0.918		
M_9	236.06	183.20	0.974	392.54	299.78	0.932	532.61	410.35	0.917		
M_{10}	246.70	192.80	0.975	365.66	282.90	0.938	519.34	398.54	0.924		
M_{11}	229.46	179.58	0.976	408.90	302.67	0.943	502.17	371.27	0.913		
M_{12}	403.41	335.26	0.974	658.86	562.81	0.891	765.91	662.67	0.919		
M_{13}	207.76	164.98	0.976	404.58	302.29	0.904	502.67	379.14	0.888		
M_{14}	405.33	350.01	0.969	477.79	370.13	0.885	627.84	531.41	0.869		

Table 5: The performance of BiLSTM based on the best tuned parameters, and the 14 constructed data models.

Forecasting COVID-19 calls (Results)



Forecasting COVID-19 calls (Challenges)

- Including other factors?
- Increasing the prediction horizon.

General Challenges

Related to the Language:

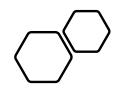
- Arabic has a very complex morphology.
- The use of mixture of dialects

Other challenges:

- The lack of in-domain datasets.
- Sharing the data and privacy.
- Interpretability of the models.
- Sensitivity of medical scenarios

List of Publications

- Faris, H., Habib, M., Faris, M., Alomari, M. and Alomari, A., 2020. Medical speciality classification system based on binary particle swarms and ensemble of one vs. rest support vector machines. Journal of biomedical informatics, 109, p.103525. Elsevier
- Faris, H., Habib, M., Faris, M., Alomari, A., Castillo, P.A. and Alomari, M., 2021. Classification of Arabic healthcare questions based on word embeddings learned from massive consultations: a deep learning approach. Journal of Ambient Intelligence and Humanized Computing, pp.1-17. Spriger
- Faris, H., Habib, M., Faris, M., Elayan, H., & Alomari, A. (2021). An intelligent multimodal medical diagnosis system based on patients' medical questions and structured symptoms for telemedicine. *Informatics in Medicine Unlocked*, 23, 100513. Elsevier



Thanks Any questions?

hossam.fari@ju.edu.jo

