Southern Connecticut State University School of Arts and Sciences Department of Mathematics

MAT 450 Real Analysis

1 Catalog Description

Theoretical analysis of functions of one real variable; limits, continuity, differentiability, Riemann integral.

2 Purpose

MAT 450 Real Analysis or MAT 446 Advanced Calculus with Applications are required courses for the applied, pure, and teaching concentrations in the BS in mathematics. MAT 446 covers a variety of applied topics at a higher level than MAT 450, whereas MAT 450 is a "traditional" proof-based course in real analysis. MAT 450 presents the theoretical analysis of functions of one variable.

3 Credit

MAT 450 carries 3 semester-hours of college credit.

4 Prerequisites

"C-" or better in both MAT 250 and MAT 252.

5 Format

A lecture-recitation format is followed.

6 Course Objectives

Students completing MAT 450 should be able to:

- 1. Know the important theorems that underlie the principles of calculus, and how they are proven rigorously.
- 2. Prove statements about sequences and functions using $\epsilon \delta$ definitions and the consequences of important theorems.
- 3. Provide examples and counterexamples which illustrate the importance of theorem hypotheses and differences between similar definitions.

7 Outline

- 1. Real numbers (15%)
 - (a) Algebraic properties (field axioms)
 - (b) Order properties and inequality theorems
 - (c) Completeness property
 - (d) Sequences and limits
 - Rigorous definition
 - Monotone sequences and the Monotone Convergence Theorem
 - (e) Series and sequences of partial sums
 - (f) Cauchy criterion for sequences and series
- 2. The topology of \mathbb{R} (10%)
 - (a) Open sets, closed set
 - (b) Compact sets
 - i. Sequential criteria (Bolzano-Weierstrass Theorem)
 - ii. Equivalence to closed and bounded/Heine-Borel Theorem
- 3. Functions of one variable (25%)
 - (a) Limits and continuity
 - (b) Limit theorems with proofs
 - (c) Continuous functions on a closed and bounded interval
 - i. Extreme Value Theorem
 - ii. Intermediate Value Theorem
 - (d) Sequences of continuous functions
 - i. Point-wise versus uniform convergence.
 - ii. (Optional) History of continuity and convergence.
- 4. Derivatives of functions of one variable (20%)
 - (a) Review definition
 - (b) Proof of properties (suggested: sum, product, and chain rules)
 - (c) Differentiability implies continuity
 - (d) Increasing/decreasing functions, concavity (proofs)
 - (e) Inverse functions and the derivative of the inverse
 - (f) (Optional) Mean Value Theorem
- 5. Riemann integral (20%)
 - (a) Upper and lower sums

- (b) Proof of existence of definite integral
- (c) Proofs of fundamental theorems
- (d) Verification of properties
- (e) (Optional) Comparison to other definitions of integral (Lesbesgue, Stieltjes)
- (f) (Optional) Improper integrals
- 6. Taylor's Theorem (10%)
 - (a) Remainder estimation (derivative and/or integral representations)
 - (b) Taylor series and remainders for standard functions
 - (c) Interchanging summation and integration
 - (d) Example function which does not agree with its Taylor series (e.g., $f(x) = e^{-1/x^2}$)

8 Sample Texts

- Abbott, Stephen. Understanding Analysis, 2nd edition, Springer Undergraduate Texts in Mathematics, 2015.
- Bartle, Robert G. and Sherbert, Donald R. Introduction to Real Analysis John Wiley, 1982.
- Clark, Colin. Elementary Mathematical Analysis, 2nd edition, Wadsworth, 1982.
- Parzynski, William R. and Zipse, Philip W., Introduction to Mathematical Analysis, McGraw-Hill, 1982.

9 Bibliography

10 Prepared

February 16, 1985

11 Preparer

Prepared by K. Latil and M. Meck.

12 Modified

Modified by Owen Biesel and Aaron Clark, April 4, 2023.